iz ugla Prof. dr Branislava Čabrića Archives - Page 2 of 10 - Svet fizike
Svet fizike

iz ugla Prof. dr Branislava Čabrića

Najave kraja fizike

by on Oct.03, 2015, under iz ugla Prof. dr Branislava Čabrića

Najave kraja fizike

 

 

Još  od najstarijih vremena ljudi su imali poriv da veliko bogatstvo različitih fenomena iz prirode, koje su direktno ili indirektno uočavali, dočaraju preko malog broja teorijskih koncepata i da grade „jedinstvenu sliku“ sveta. Univerzalnost tih koncepata, kao i njihov mali broj, označili su začetke koncepta teorije svega (TOE), koja bi na izvestan način predstavljala najavu „kraja fizike“ (str. 43 u http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=25).

Kraj fizike, šta god da je to značilo u datom momentu, je najavljivan više puta, ponekad i od vrlo eminentnih naučnika svoga vremena. U svome čuvenom obraćanju Britanskom kraljevskom društvu (akademiji nauka) 27. aprila 1900. godine, njegov predsednik, čuveni fizičar Lord Kelvin (Thomson, William, 1st Baron Kelvin, 1824-1907) ističe „lepotu i jasnoću dinamičke teorije“, konstatuje da je konačno Njutnova fizika proširena i da obuhvata celu fiziku, uključujući toplotu i svetlost. U osnovi, sve što bi moglo da se sazna, bar u principu je već poznato. Izgledalo je da Njutnova (Newton, Sir Isaac, 1642-1727) i Maksvelova (Maxwell, James Clerk, 1831-1879) teorija mogu da objasne svaki fenomen u celom svemiru. Doduše, pomenuo je „dva mala crna oblaka“ na horizontu klasične fizike: nemogućnost opisa zračenja crnog tela i neuspeh određivanja kretanja kroz etar. Ova dva mala crna oblaka su prerasla u oluju koja je nepovratno menjala osnovne koncepte fizike, načine proračuna i interpretacije rezultata opažanja, kao i bazične predstave o strukturi fizičke realnosti. Kada se „oluja“ stišala, fizika je postala bogatija za dva monumentalna oslonca: kvantnu mehaniku i teoriju relativnosti. U ovom slučaju, dva fenomena koja su štrčala iz velelepne zgrade fizike kraja XIX veka, dovela su do otkrića novih, tada neslućenih, bazičnih principa koji određuju zakonitosti našeg sveta, i iskazuju se u punoj meri u fizici mikrosveta i procesa na vrlo velikim brzinama (brzina svetlosti i njoj bliske brzine).

Krajem treće decenije XX veka izgledalo je da je razumevanje i opis fundamenata strukture prostor-vremena  i materije skoro završeno. Posle specijalne, formulisana je i opšta teorija relativnosti, koja je posle svega nekoliko godina uspešno potvrđena neposrednim opažanjem skretanja svetlosti u gravitacionom polju Sunca. Kvantna teorija je uspešno objasnila atomske spektre i elektronske orbitale. Otkriće neutrona je objasnilo izotope atomskih jezgara. Osnovni elementi koji grade celokupnu poznatu materiju, elektron, proton i neutron su bili otkriveni. Čuveni fizičar Maks Born (Born, Max, 1882-1970) 1933. godine, pre održavanja VII Solvejske (Ernest Gaston Joseph Solvay, 1838-1922, belgijski hemičar i industrijalac) konferencije fizike u Briselu, najavljuje „Fizika kakvu je znamo će biti završena za šest meseci“. I ovoga puta su se isticala dva nerešena poblema: šta drži protone i neutrone na okupu u atomskom jezgru i koje su sile odgovorne za alfa, beta i gama raspade? Odgovor na ova i njima sledujuća pitanja je rezultirao grandioznim razvojem fizike u preostalih sedam decenija XX veka, prvenstveno u sektoru razumevanja i opisa osnovne strukture materije i fundamentalnih interakcija u prirodi. Došlo je do razvoja novih oblasti fizike, nuklearne fizike, a potom fizike elementarnih čestica i polja, odnono fizike visokih energija.  Eksperimentalni uređaji ove oblasti fizike su drastično „rasli“ u kompleksnosti i veličini, a po pravilu su zahtevali razvoj novih, do tada nepoznatih tehnologija. Veliki hadronski kolajder u CERN-u ima u obimu oko 26 km, a pojedinačni detektori, koji treba da omoguće dalji prodor u tajne mikrosveta su veličine zgrada 4-5 spratova i na njima rade međunarodne kolaboracije od po 1.000-1.500 naučnika (slike 1-3). (str. 12 u http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=52). U ovom slučaju, kvantna mehanika i specijalna teorija relativnosti nisu dovedene u pitanje u toku razvoja fizike elementarnih čestica i polja; naprotiv, one su potvrđene sa do tada neviđenom preciznošću u fizici, ali je otkriveno veliko bogatstvo novih fenomena u subnuklearnom domenu koji su kvalitativno i kvantitativno vrlo uspešno opisani (str. 19 u

http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=52).

Stiven Hoking (Hawking, Stephen 1942-, slika 4), takođe čuveni fizičar, podstaknut napretkom postignutim teorijom supergravitacije 1980. godine prognozira da će kompletna teorija, koja ujedinjuje opis svih fundamentalnih interakcija u prirodi, biti nađena do kraja XX veka. Problemi kvantne teorije supergravitacije, inicirali su nove koncepte otelotvorene u teoriji struna, membrana i M-teoriji. Hokong 2004. godine priznaje da je pogrešio u predviđanjima i kaže: „U to vreme, najbolji kandidat je bila  N = 8  supergravitacija. Danas izgleda da bi ta teorija mogla da bude aproksimacija fundamentalnije teorije, teorije superstruna. Ja sam bio optimista u nadi da ćemo rešiti problem do kraja veka. Međutim, ja i dalje verujem da su 50šanse da ćemo naći kompletnu unificiranu teoriju u sledećih 20 godina“

Koliko god da postoji mogućnost nalaženja jedinstvene bazične „teorije svega“ – kao što bi Hoking rekao 50% u narednih 20 godina – definitivno je jasno da to neće imati nikakve posledice za osnovnu maticu fizike, koja se suočava sa izazovom kvantitativnog opisa konkretnih fizičkih sistema, otkrićem novih konkretnih fenomena složenih fizičkih sistema i primenom tih rezultata na dobrobit čovečanstva. Razmatranje pitanja „da li je na pomolu kraj fizike“ ima jedino smisla u sektoru osnova fizike – osnovnih čestica, fundamentalnih interakcija i njihovog opisa (str. 14 u http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=52).

 

SAVREMENA UROBOROS TEORIJA

Fizika čestica je u svom razvoju uspešno opisivala prirodu na sve manjim i manjim rastojanjima. U paralelnom sledu, a naročito u poslednje vreme, kosmologija je postigla zavidnu zrelost i ušla u fazu sve uspešnijeg opisa svemira. Ove dve, na prvi pogled divergirajuće teorije u pogledu predmeta istraživanja, su se u poslednje vreme „srele“, što je urodilo plodom. Obe oblasti su unapređene i sve više se naslućuje nastanak grandiozne teorije svega koja će opisati sve fenomene u svemiru, kao i sam svemir. Svedoci smo praskozorja savremene uroboros teorije? (slika 5).

 

 

 

1

 

Slika 1. Sistem akceleratora u CERN-u.

http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=52

 

2

 

Slika 2. Tunel Velikog hadronskog sudarača

http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=52

 

 

3


Slika 3.
Gradnja CMS detektora.

http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=52

 

 

4

Slika 4. Stiven Hoking – da li je na pomolu kra(l)j fizike?.

http://www.nbcnews.com/science/space/stephen-hawking-gets-star-treatment-theory-everything-n238441

 

5

 

Slika 5. Savremena uroboros teorija – Teorija svega – kako nauka vidi svemir danas …

http://designblog.rietveldacademie.nl/?p=5076

 

Referenca

  1. Šijački, Đ., Da li je na pomolu kraj fizike?, u: ANALI Ogranka SANU u Novom Sadu, br. 1, 2006, str. 105-116., na sajtu:

http://www.ogranak.sanu.ac.rs/PDFVidi.aspx?arg=25, str. 43.

 

Cabric

 

 

 

 

Prof. dr Branislav Čabrić

Prirodno-matematički fakultet u Kragujevcu

 

branko.cabric@gmail.com

Leave a Comment more...

MOĆ NANOČESTICA

by on Sep.27, 2015, under iz ugla Prof. dr Branislava Čabrića

Ima puno prostora dole

 

 

Još je 1959. godine fizičar Ričard Fajnman u jednom istorijskom predavanju pomenuo i sledeće: „There is plenty of room at the bottom“ (Ima puno prostora dole) https://www.youtube.com/watch?v=4eRCygdW–c, zamišljajući već tada kako će celu enciklopediju „Britanika“ ugravirati na površini veličine iglene glave. Ipak trebalo je da prođe 26 godina pa da jedan inženjer (Tom Njuman) ostvari Fajnmanov izazov, tj. da sve informacije sadržane na stranici jedne knjige budu prenete na površinu koja je 625 miliona puta manja.

U prirodi se gotovo sve dešava na nanoskali – to jest na 100 nanometara i niže, gde je nanometar miloniti deo milimetra. Do 80-ih godina 20. veka, kada je konstruisan skenirajući tunel mikroskop (STM), ovaj minijaturni svet bio je nevidljiv. Sada imamo mikroskope koji mogu da prate najsitnije detalje u unutrašnjosti naših ćelija. To je podstaklo naučnike na svim poljima, od medicine do nauke o materijalima, da rade na mnogo manjim skalama.

Čestice, međutim, počinju da se veoma čudno ponašaju na nanoskali. Sasvim obični materijali, poput metala u prahu i brašna, počinju da eksplodiraju. Kod tako malih čestica događaju se čudni subatomski efekti, menjajući električno ponašanje i reaktivnost materijala. Upravo to nepredvidljivo ponašanje nametnulo je pitanje o bezbednosti upotrebe nanočestica. Uprkos tome, postoje mnogobrojni problemi za koje je nanotehnologija možda jedino rešenje – na primer, u praćenju potrebe za sve snažnijim kompjuterima ili u slanju lekova do obolelih ćelija u ljudskom organizmu.

Moć nanotehnologije dugo nam je nadohvat ruke, ali toga nismo bili svesni. Još 20-ih godina 20. veka automobilske gume presvlačene su materijalom zvanim gasna čađ da bi se smanjilo njihovo habanje; niko nije uvideo da su upotrebljene čestice ugljenika zapravo nano veličine. Vekovima su se nanočestice zlata upotrebljavale za proizvodnju crvenog i plavog stakla – što je još jedna osobina nanočestica: da se ne javljaju uvek u istoj boji kao njihovi veći pandani. Nanočestice zlata, poznate i kao koloidno zlato, upotrebljavaju se u razne svrhe, od bojenja stakla do lečenja artritisa. Naučnici takođe veruju da bi se mogle upotrebiti i za otkrivanje ćelija raka.

Od kada je Tom Njuman 1986. godine rešio Fejnmanov izazov, tj. da sve informacije na  stranici jedne knjige budu prenete na površinu koja je 625 miliona puta manja, nanotehnologija je prerasla u zasebnu nauku. Godine 1985. otkriven je bakminsterfulerin, oblik ugljenika, tzv. bakiloptice poznate po svojim šupljim, okruglim strukturama. One se javlja u čađi sveće, ali se dans komercijalno proizvodi na drugi način. Bakiloptice su sačinjene od 60 atoma ugljenika i imaju izvanredne osobine. Na primer, teško ih je razdvojiti čak i na visokoj temperaturi, a teško ih je i komprimovati. Bakiloptice su do sada malo primenjivane, ali je njihovo otkriće dovelo naučnike do povezanog, i jednako intrigantnog molekula – ugljenične nanocevi, koja je najverovatnije jedan od najpoznatnijih i najkorisnijih proizvoda nanotehnološke revolucije.

Modeli molekula ugljenične nanocevi otkrivaju strukturu sličnu kalemu bodljikave žice. Stoga je neverovatno utvrditi da su ove sićušne cevi 100 puta su jače od čelika. One su istovremeno vrlo lagane i mogu biti provodnici ili poluprovodnici, što su privlačne osobine za elektronske inženjere koji rade na konstruisanju jeftinih solarnih ploča i ekrana osetljivih na dodir. Lakoća i čvrstina ugljeničnih nanocevi su odlike koje ih čine pogodnim za izradu sportskih rekvizita: skija, dasaka za surfovanje, teniskih reketa, štapova za golf i hokej, obuće za atletičare, bicikle …….

U biologiji se sićušni fluoroscentni kristali zvani kvantne tačke već koriste za praćenje kretanja ćelija i molekula do najsitnijih detalja. Godine 2005. naučnici su pokazali da se neki kristali mogu zalepiti za viruse koji izazivaju respiratorne infekcije kod dece, što je dalo nadu da će se razviti novi dijagnostički testovi. Kristali su prepoznavali i lepili se za strukture u spoljnom sloju virusa. Kvantne tačke takođe bi mogle izvršiti revoluciju u kompjuterskoj industriji zato što se upotrebljavaju za povećanje prostora za čuvanje podataka i za brže preuzimanje podataka.

Uprkos osnivanju novih katedri na univerzitetima širom sveta, potencijal nanotehnologije je i dalje neiskorišten. Prisutna je i zabrinutost zbog njene bezbednosti. Nanočestice se već koriste za boje otporne na prljavštinu, losione za sunčanje i za sportsku opremu, ali je teško ostvariti stalnu komercijalnu proizvodnju nanočestica.

Medicinska dostignuća podstakla su pojavu niza novih medicinskih aparata, uključujći nanomagnete. Oni se uspešno ubacuju u krvne ćelije miševa da bi pružile detaljne slike krvnih sudova pomoću magnetne rezonance (MRI).

Nanomašine, uključujući motore napravljene od DNK (genetskog materijala) i kompjutera na nanoskalama koji obavljaju jednostavne kalkulacije, mogle bi predstavljati osnov za sofisticiranije mašine na nano-skalama. Inženjeri sada rade na nanorobotima na sopstveni pogon, koji će jednog dana možda obavljati manje složene operacije bez hirurga.

 

ONE SU VEĆ MEĐU NAMA

 

Nanotehnologija se koristi u gotovo svakoj industriji. Potrošačka roba: odeća i razne tkanine, hrana, aparati za domaćinstvo, optika, sportska odeća i oprema, kozmetika. Građevina: boje, površinski slojevi i zaštita. Proizvodnja: vazduhoplovstvo, proizvodnja vozila, štampa i pakovanje, rafinerije. Medicina i zdravstvo: davanje lekova, dijagnostika, inženjering tkiva, nega kože. Hemija i zaštita životne sredine: filtracija, kataliza (ubrzavanje hemijskih reakcija), hemijski senzori, kvalitet vode. Elektronika: čuvanje memorije, računarstvo. Enegrija: goriva, solarne ćelije, baterije.

 

U BUDUĆNOSTI

 

U budućnosti bi nanotehnologija mogla proizvesti supersnažne implantate, izuzetno brze kompjuterske čipove i veštačke „kože“ osetljive na dodir za humanoidne robote. Nanosprave koje cirkulišu u krvotoku mogle bi pratiti ljudsko zdravlje iz unutrašnjosti tela. Superjaki a laki materijali mogli bi dovesti do revolucije u građevinarstvu, dok neki drugi nude ekonomičan i efikasan način čuvanja i upotrebe energije.

 

SENDVIČ FRIŽIDER

 

Naučnici su uspeli da naprave najmanji frižider na svetu – i prilično moćan (slika 6). Iako je veličine običnog mikročipa, u stanju je da ohladi neki predmet na temperaturu od neverovatnih –272,8ºC! Američki Nacionalni institut za standarde i tehnologiju, tvorac ovog noviteta dimenzija 25 × 15 mikrona je napravio „sendvič“ od normalnog metala, jednog izolatora i jednog superprovodljivog metala. Kada se struja propusti kroz sendvič, elektroni sa običnog metala tuneliraju kroz izolator ka superprovodniku. Tada temperatura u normalnom metalu dramatično opada, te crpi dodatnu toplotnu energiju iz predmeta koji zapravo treba ohladiti.

51


Slika 1.
Ilustracija skenirajuće tunel mikroskopa (STM).

http://www.personal.psu.edu/ewh10/ResearchBackground.htm

52

 

Slika 2. Ilustracija manipulacije atomima (bottom-up pristup) pomoću atomskog mikroskopa  (AFM),  AFM tip na slici  – „Olovkom“ građen novi svet !!!).

http://phys.org/news164996346.htm

 

53

 


Slika 3.
Ugljenična nanocev. Prečnika 1,3 nm, ova nanocev vidljiva je jedino pod skenirajućim tunl mikroskopom.

http://sh.wikipedia.org/wiki/Ugljeni%C4%8Dna_nanocev

 54

Slika 4. Godine 2005. bicikle s okvirima od ugljeničnih nanocevi vozili su biciklisti na Tur de Fransu. Osim što biciklu daju čvrstinu i krutost, nanocevi ih čine i krajnje laganim. Svaki ram bicikla težak je manje od 1 kg.

http://en.wikipedia.org/wiki/Timeline_of_carbon_nanotubes

 

55

 

Slika 5. Imaginarni nanorobot ili nanobot „servisira“ “ crvena krvna zrnca.

http://www.wifinotes.com/nanotechnology/what-is-nanorobotics.html

 56

Slika 6. Najmanji frižider na svetu.

http://www.b92.net/zivot/nauka.php?nav_id=184540

 

Literatura

  1. Hart-Dejvis, A., gl. i odg. urednik, NAUKA: sveobuhvatni vizuelni vodič, Mladinska knjiga, Beograd, 2011., str. 392.
  2. NANO, Prospekt izložbe Centra za naučnu, tehničku i industrijsku kulturu u Grenoblu, postavljene u Francuskom kulturnom centru u Beogradu od 02. do 20. septembra 2008. godine.

Cabric

 

 

 

 

Prof. dr Branislav Čabrić

Prirodno-matematički fakultet u Kragujevcu

 

branko.cabric@gmail.com

 

 

Leave a Comment more...

Koriolisova sila svuda oko nas

by on Sep.21, 2015, under iz ugla Prof. dr Branislava Čabrića

Kompas u ruke

 

 

Nije redak slučaj da se ideje realizuju daleko posle vremena kada su ponikle. Setimo se samo Leonarda. Jedan od manje izrazitih takvih slučajeva jeste teorija Koriolisa, za koju je bio potreban jedan vek da bi se shvatio njen sveobuhvatni značaj.

Kada se sa zemaljskog pola, gde je kružna brzina Zemljine rotacije ravna nuli, predmet kreće prema ekvatoru, kontinualno nailazi na oblasti sve veće kružne brzine. Na ekvatoru je ova brzina maksimalna i, izražena tangencijalno, iznosi fantastičnih 1664 km/č (što se doduše ne oseća, ali je realnost). Prilikom ovog kretanja iz stanja manje u stanje veće kružne brzine (ili obrnuto) predmet se “zanosi”, ili stručno rečeno, na njega deluje inercijalna sila upravno na pravac kretanja. (U slučajevima kretanja pravo na istok ili zapad, efekata neće biti jer tom prilikom nema promene kružne brzine.) U sledećim će biti izložene posledice ove pojave, koje su šire no što bi se na prvi pogled zaključilo.

Još pre više od jednog i po veka (1835) ovu je pojavu matematički formulisao francuski inženjer i mateamtičar Koriolis (Gustave-Gaspard Coriolis, 1792 – 1843) u svom delu Sur les        Véquations du mouvement des systèmes de corps (O jednačinama relativnog kretanja sistema tela). Tako u nauci nastaje pojam Koriolisova sila. Ovaj termin se u literaturi javlja tek od 1923. godine, što bi značilo da mu pre toga nije pridavan naročit značaj. Ipak su Francuzi Koriolisa dovoljno cenili da ga 1836. godine izaberu za člana Akademije nauka zbog drugih dostignuća u teorijskoj mehanici i termodinamici (Uveo je još 1829. godine pojam rada i kinetičke energije u današnjem smislu. Takođe je dao doprinos primenjenoj mehanici.). Bio je profesor slavne Politehničke škole (École polytechnique) u Parizu, a od 1838. njen direktor.

 

 

Vinča kao svedok

Horizontalna komponenta Koriolisove sile, Cf, primenjena na zemaljsku kuglu, srazmerna je sinusu geografske širine Ii brzini tela koje se kreće, v. Relacija je data kao Cf = v (2w sin q), gde je w konstanta i predstavlja ugaonu brzinu zemljine rotacije, tj. 7,29 · 10-5 rad/s. Ona ima negativan predznak na južnoj polulopti. Kako sledi iz ove jednačine, u ekvatorijalnim oblastima efekat će biti mali i raste kako idemo prema severu ili jugu (sin 00 = 0, sin 900 = 1). Jedno od najočiglednijih posledica Koriolisovih sila jesu obale reka koje teku prema jugu ili prema severu. Nama je vrlo dobro poznat Dunav koji od granice teče pretežno prema jugu sve do Beograda. U svom toku on stalno, milenijumima, biva “zanošen” ka zapadu, tako da su mu danas desne obale strme a leve ravne (i najčešće plavne ako nema nasipa). Posle svake velike vode, reka odnese po malo desne obale. Nekada je Dunav tekao znatno istočnije.

Obratno je sa Savom i Drinom kada teku prema severu. Ovde se reke pomeraju prema istoku. Sava od Obrenovca do Beograda roni svoju desnu obalu i stvara probleme saobraćajnicama i građevinama. Isto je sa Drinom gde se Semberija širi na račun Mačve. Pored imovinskih, stvara i međudržavne granične probleme. Sem oziđivanja, ovde spasa nema.

Pravilo koje se lako pamti: u bilo kojem smeru se tok (ili predmet) kretao skretaće manje ili više udesno na severnoj polulopti i ulevo na južnoj. Ovo je i statistički pokazano na neobičnom primeru jednosmernih železničkih koloseka u Evropi. Češće je trebalo menjati desne šine jer su vozovi na njih stalno vršili veći pritisak.

Duboki utisak je na pisca ovih redova ostavilo praistorijsko nalazište kod današnjeg sela Vinča. Naselje je očigledno bilo na vrhu brega. Dunav je danas prišao ovom bregu i dobar deo odneo. Sa obale se danas diže vrlo strm obronak, dvadesetak metara visok, na kojem se lepo vide pojedini arheološki slojevi (delimično kao delo arheologa). Na prvi pogled, ovo ne bi trebalo da bude uzrokovano Koriolisovim silama, jer od Beograda Dunav teče na istok (kada Koriolisove sile ne deluju). Ipak, pogled na geografsku kartu kazuje da Dunav između Pančeva i Grocke pravi oštar zaokret prema jugu, pa je ovde ipak ova sila u punom zamahu. U ostalom, pitanje je da li bi epohalno otkriće vinčanske kulture ugledalo dana bez podrivanja Dunava.

 

 

Od Jupitera do pega na Suncu

Na Savi, između sela Jarak i Šapca, postoji takođe krivina u kojoj reka dvadesetak kilometara teče prema jugu. U blizini je praistorijsko nalazište Gomolava. Ipak, staro naselje se očigledno nalazilo na rečnoj adi. Danas Sava teče više od 1 km zapadnije, ali je ništa ne sprečava da plavi svoju levu, ravnu obalu, na užas arheologa kojima odnosi iskope. Da desna strana Save ovde nije obezbeđena nasipima, reka bi ovde “odšetala” još više na zapad.

Jedna od tužnih posledica Koriolisovih sila pokazala se u toku Drugog svetskog rata. Nemci su na početku silovito osvojili dobar deo teritorije Rusije i Ukrajine. Ovde teku značajne reke, Don, Donjec, Dnjepar, Bug, Dnjestar i mnoge druge, sa severa na jug. U drugoj fazi rata, Crvena armija je imala muka da povrati teritorije, jer su zapadne obale ovih reka uglavnom bile strme i Nemcima pogodne za odbranu. I kod nas je mnogo boraca, novembra 1944. godine, poginulo prilikom forsiranja Dunava kod Batine u Baranji, iz istih razloga. (Prema istorijskim podacima bilo je 271 mrtvih i 850 ranjenih. Sovjetski gubici se ne pominju, iako su po svoj prilici bili veći.).

Koriolisove sile su od izvanrednog značaja i kod cirkulacije atmosfere. Kada Zemlja ne bi imala rotacije, cirkulacija vazduha bila bi jednostavna: hladan vazduh iz polarnih predela tekao bi, kao gušći, prema ekvatoru; zagrejan vazduh bi se u gornjim slojevima vraćao ka polovima. U rotirajućem sistemu, Koriolisove sile značajno usložnjavaju ovaj tok. Hladan vazduh, tekući na jug, trpi skretanje na zapad, dok je kod toka toplog vazduha skretanje na istok. Stvaraju se vrlo složeni vrtlozi – cikloni i anticikloni. Na severnoj polulopti cikloni crkulišu suprotno smeru kazaljke na satu a anticikloni obrnuto. (Na južnoj hemisferi smer cirkulacije je suprotan.) I ovi vrtlozi se kreću i dalje su podložni Koriolisovim silama. Otuda je i stalna i periodična promena smera vetrova na datim tačkama zemaljske lopte, kao i sve druge meteorološke promene koje sleduju.

Sve se ovo verno reprodukuje u atmosferama velikih gasnih planeta, Jupitera i Saturna, a nasigurno i drugih. Ovde spadaju i intezivna vrtložna kretanja poznata na Zemlji kao harikeni, tajfuni, tornada, pijavice i dr. Meteorolozi, verovatno, pominju Koriolisa u negativnom kontekstu kad pogreše u prognozama. Analogna pojava se događa i u cirkulaciji okeana, tj. kod morskih struja. Čak su i pege na Suncu podložne istim zakonitostima.

 

 

Pitanje za artiljeriju

Artiljerija i raketna tehnika moraju voditi računa o Koriolisovom efektu. Ako se projektil ispali na jug (na severnoj polulopti), na primer, završiće u zapadnijoj tački od proračunate. Mnogo je jednostavnije pucati na istok ili zapad, gde Koriolisove sile ne utiče. (ovo su naši političarai očigledno intuitivno znali već decenijama.)

U elektrodinamici, kod rotirajućih električnih mašina, postoji posebna kompenzujuća komponenta napona, poznata kao Hristofelov napon (Chistoffel), koji nastaje zbog Koriolisovog efekta.

Koriolisove sile su aktivne i na molekulskom nivou. Pošto gasoviti molekuli normalno rotiraju, vibracije molekula su takođe izložene ovim silama. Vibracije više nisu prosta kretanja u ravni, već to čine po elipsama raznih ekscentričnosti. To dovodi do cepanja energetskih nivoa molekula i usložnjavanja molekulskih spektara, pa se mogu javiti i “zabranjene” trake, retko doduše baš iz ovih razloga.

 

Meandri i centrifugalne sile

Kad smo već kod reka i njihovih obala, jedna pojava koja je samo delimično u vezi s Koriolisovim silama jeste pojava meandra na ravničarskim rekama. Naziv potiče od izuzetno vijugave reke Meandros u Maloj Aziji, kako se zvala još u antici (danas se na turskom zove Menderes). Kod nas su meandri karakteristični za Dunav, Savu, Tisu, donje tokove Drine i Morave itd.

Zanimljivo je da geografska nauka danas nema jedinstven i konačan stav o načinu nastanka meandra. Jedan od mogućih uzroka je centrifugalna sila. Kada reka ulazi u krivinu, ma koliko blaga bila, centrifugalna sila će maticu reke potiskivati ka spoljašnosti luka. Stalna erozija, koja je time podstaknuta, produbljivaće krivinu. Koriolisova sila ovde može da potpomogne. Ova pojava ima i ekonomskih posledica: plovidba zbog meandra može biti značajno produžena, što je kod nas slučaj na Savi.

Da stvari nisu tako jednostavno objašnjive, dokaz su meandri koji su zapaženi kod morskih struje i u brzim vazdušnim strujama u visokoj atmosferi (jet stream). Postoje teorije zasnovane na talasnim pojavama i principu najmanjeg otpora proticanju koje, ipak, ne daju kvantitativne odgovore. U svakom slučaju, teorije su složene i teško razumljive.

Posle velikih voda, reka ponekad “preseče” krivine (a ponekad se to i namerno čini), ostavljajući bivše tokove, u obliku polukrugova, koje nazivamo mrtvaje, što je čest slučaj. Ovo vole ptice, kao na primer u Obedskoj bari. Mrtvaje vremenom bivaju zasute i pretvaraju se u ritove. Konačno je to suvo tlo koje se od okoline razlikuje samo različitim rastinjem, ako već ne bude obrađeno.

Ako je nekome oburvana vikendica na obali Dunava, “kriv” je Koriolis. Pouka: ako nameravate da gradite kuću na obali reke, uzmite kompas i setite se njegovih sila.

 

Napomena o projektilu

Postoje gledišta da Koriolisova sila u stvari ne postoji, pa se naziva pseudosila. Da bismo ovo ilustrovali, razmotrimo gore pomenuti primer hica upravljenog na jug. Za posmatrača van Zemlje, putanja projektila će biti neskrenuta. Za vreme putovanja projektila Zemlja učini određenu rotaciju sa zapada na istok, pa on pada zapadnije od mesta ispaljivanja. Nikakva sila na njega nije delovala! Pitanje je da li bi se čovek kome je reka zbog zanošenja odnela zemlju i kuću saglasio da je to bila samo “pseudosila”. U stvari, kako god gledali, efekti će biti isti.

 sl1

 

Slika 1. Vinča kao svedok.

http://www.politika.rs/rubrike/Beograd/Vinca-tajna-ispod-sedam-i-po-milenijuma.sr.html

 sl2

 

Slik 2. Snimak islandskog ciklona od 4. septembra 2003. godine. Vazdušna masa u tom području se kreće od periferije prema unutrašnjosti, u smeru koji je suprotan smeru kretanja kazaljke na satu, pod dejstvom Koriolisove sile i sile koja potiče od gradijenta pritiska.

http://en.wikipedia.org/wiki/Coriolis_effect

 

 sl3

 

Slika 3. Šematski prikaz ciklona  koji bi nastali delovanjem samo Koriolisovoe sile/efekta, proračunati za brzine vetra od 180 do 250 km/h. Cikloni se retko formiraju duž ekvatora zbog slabog Koriolisov efekat u ovom regionu.

http://en.wikipedia.org/wiki/Coriolis_effect

 

Literatura

  1. Ribnikar, S., Koriolisove sile svuda oko nas, Flogiston (Beograd), br. 6 (1997), str. 141.
  2. Čabrić, B., Sila koja pomiče rijeke, Priroda (Zagreb), br. 2 (2014), str. 42.
  3. Čabrić, B., Foucaultovo nihalo – izdelava in delovanje, Fizika v šoli (Ljubljana), št. 1-2 (2007), str. 64.

Cabric

 

 

 

 

Prof. dr Branislav Čabrić

Prirodno-matematički fakultet u Kragujevcu

branko.cabric@gmail.com

 

 

 

 

Leave a Comment more...

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

preporučite nas